
"BIOMASSS GASIFICATION FOR THERMIC AND ELECTRIC ENERGY GENERATION"

Desarrollos Energeticos and Ambiente
Ing. Sixto Agüero / Masters in Energy Management

Biomass in Primitive Times

"They call it fire!...it's a way to recycle Biomass"

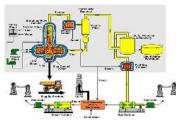
Gasification

- It is the release of volatile compounds in the fuel at temperatures between 600-800 C and in the presence of limited amounts of oxygen.
- Biomass. 80% Volatile Material
- Carbon, 30% Volatile Material
- CO, H₂ y CH4 is usually generated as combustible gasses
- A heating value of 135.4 BTU/scf.
- Nitrogen 50.9%
- □ CO 27.0%
- □ Hydrogen 14.0%
- □ Methane 3.0%
- Oxygen 0.6

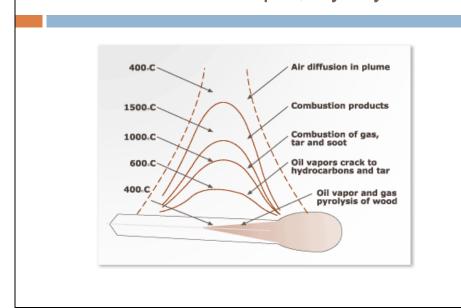
History of Gasification

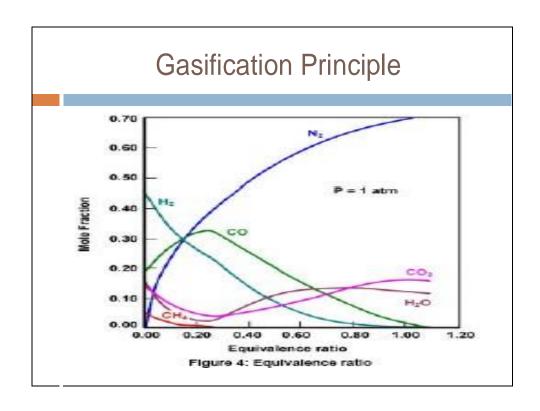
- The Gasification process was originally developed in the 1800s when producing TownGas for public lighting and cooking in England.
- Gasification processes have been used since 1920 to produce synthetic chemicals and fuels.
- During World War II it was used to power various vehicles.

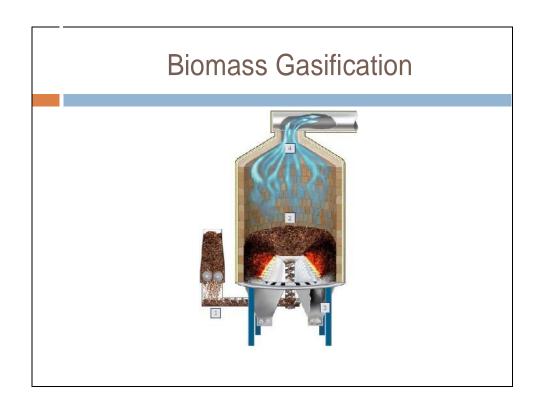
History of Gasification

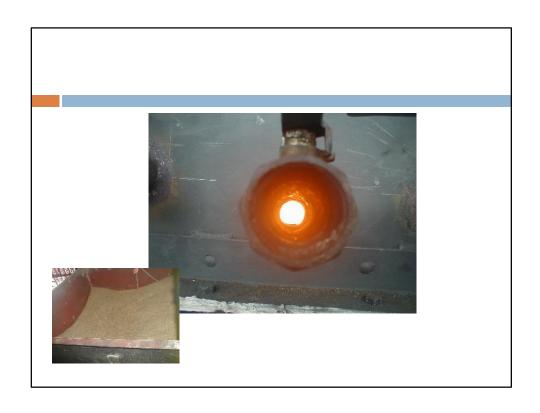


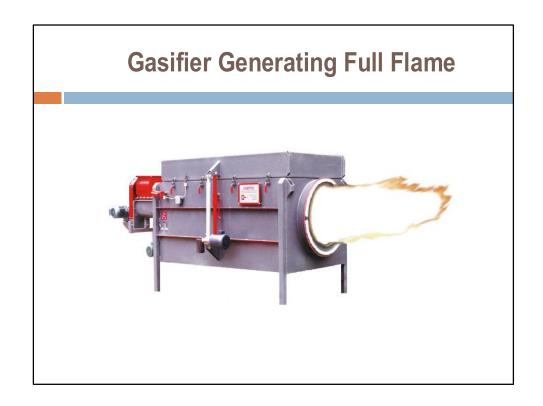
Electrical Energy Generation Plant using Gasification

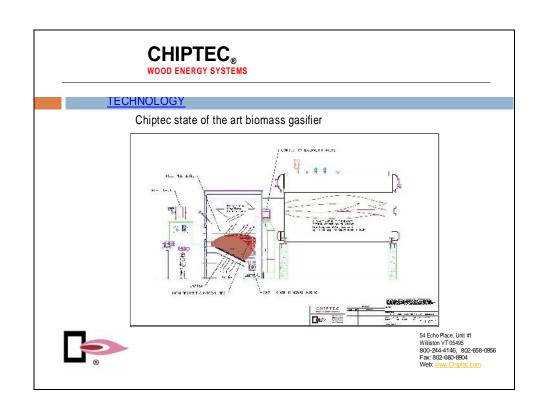









Gasification Principle, Pyrolysis



Commercial Applications

Technological Differences

Why Use Gasification vs Conventional Biomass Technology?

- > Ability to use a wide range of biomass fuels.
- > Low Emissions of Particles and Gases.
- > Better Combustion Efficiency
- (2.2 conventional vs 3.1 gasification Lbv/Lbm 600 psig)
- > High levels of proportionality 10:1
- > Reduction of Operational Maintenance Costs.

Industrial Applications

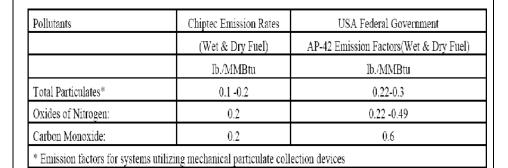
Biomass Burner Adaptation

Phoenix Series Capacities

- Generation of 1.5 to 20 MMBTU/H
- Can Replace Fossil Fuel Burners
- Proportionality of 1:20 (Modulation Versatility from Low to High Fire)
- Fuel Humidities from 6 to 60%
- Complete Automation of Controls
- Continuous Ash Removal
- Integrated Particle Control System
- High Combustion efficiency
- High Pressure Steam Generation (600 psig).
- Integrated Fire Extinguishing System

Industrial Applications

B Series Gasifier

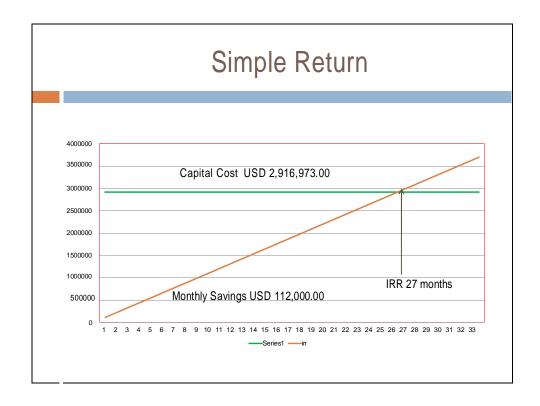

B Series Industrial Applications

- Generation of 20 to 60 MMBTU/H
- Proportionality of 1:10 (Modulation versatility from Low to High Fire automatically)
- Fuel Humidities from 6 to 60%
- Control Automation. (Touch screen)
- Integrated Oxygen and Particle Control
- Automatic ash removal (fertilizer)
- Built-in Pre Heater and Economizer.
- Complete removal of Tars
- Fire Hazard Protection

Fuels to Use:

- Bagasse
- Forest Residues
- Rice Husk
- Coffee Husk
- □ African palm residues
- Coconut Fiber
- Wood Chips
- Agricultural Waste

Pollutant Emission Reduction


Operating Costs

"Replacement of the Fuel Oil Burner to Biomass"

- Steam Fuel Oil Generation Cost
 - $= 0.0148 \ \text{Lb.} \ (\$1.70/gal)$
- Biomass Steam Generation Cost
 - $= 0.00436 \ \text{Lb.} \ (\$30/TM)$
- Net Difference due to Biomass Use
 - = 0.01044\$/Lb.

Boiler 300 BHP (150 psig, 100 F, EFF=86.1)

- 8,902 Lb./H
- Savings of \$92.93/hour (\$ 66,909.60/month)

Operating Costs

"Gasification vs Conventional Biomass"

- Conventional Systems with the presence of:
 Carbon, Methane and Carbon Monoxide equivalent to a loss of 3,042,021 BTU/H (fuel)
- Equivalent to generating 2,600 Lb/H of steam.
- □ With an "Avoided and Not Generated" Operating Cost
- of \$8,300/month. (for 20 MT boilers)

Capital Costs

"Gasification vs Conventional Biomass"

- Biomass for Steam
 Conventional Method= 0.043 \$/BTU/h
- □ Gasification for Steam

 Boiler and Gasifier= 0.055 \$/BTU/h 100psig,10k Lb/h

 0.060 \$/BTU/h 600psig,44k Lb/h

Thank you for your time!

- □ www.lencatraditional.ca
- □ aguerosixto@yahoo.com
- **+1** (778) 628-7281